Regularizing Properties of (Non-Gaussian) Transition Semigroups in Hilbert Spaces

نویسندگان

چکیده

Let $\mathcal{X}$ be a separable Hilbert space with norm $\|\cdot\|$ and let $T>0$. $Q$ linear, self-adjoint, positive, trace class operator on $\mathcal{X}$, $F:\mathcal{X}\rightarrow \mathcal{X}$ (smooth enough) function $W(t)$ $\mathcal{X}$-valued cylindrical Wiener process. For $\alpha\in [0,1/2]$ we consider the $A:=-(1/2)Q^{2\alpha-1}:Q^{1-2\alpha}(\mathcal{X})\subseteq \mathcal{X}\rightarrow \mathcal{X}$. We are interested in mild solution $X(t,x)$ of semilinear stochastic partial differential equation \begin{gather*} \left\{\begin{array}{ll} dX(t,x)=\big(AX(t,x)+F(X(t,x))\big)dt+ Q^{\alpha}dW(t), & t\in(0,T];\\ X(0,x)=x\in \mathcal{X}, \end{array}\right. \end{gather*} its associated transition semigroup \begin{align*} P(t)\varphi(x):=\mathbb{E}[\varphi(X(t,x))], \qquad \varphi\in B_b(\mathcal{X}),\ t\in[0,T],\ x\in \mathcal{X}; \end{align*} where $B_b(\mathcal{X})$ is bounded Borel measurable functions. will show that under suitable hypotheses $F$, $P(t)$ enjoys regularizing properties, along continuously embedded subspace $\mathcal{X}$. More precisely there exists $K:=K(F,T)>0$ such for every $\varphi\in B_b(\mathcal{X})$, $x\in \mathcal{X}$, $t\in(0,T]$ $h\in Q^\alpha(\mathcal{X})$ it holds \[|P(t)\varphi(x+h)-P(t)\varphi(x)|\leq Kt^{-1/2}\|Q^{-\alpha}h\|.\]

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Regularizing properties for transition semigroups and semilinear parabolic equations in Banach spaces

We study regularizing properties for transition semigroups related to Ornstein Uhlenbeck processes with values in a Banach space E which is continuously and densely embedded in a real and separable Hilbert space H . Namely we study conditions under which the transition semigroup maps continuous and bounded functions into differentiable functions. Via a Girsanov type theorem such properties exte...

متن کامل

A Non-commutative Analogue of Gaussian Hilbert Spaces

The paper gives analogues of some starting results in the theory of Gaussian Hilbert Spaces for semicircular distributed random variables. The transition from the commutative to the free frame is done considering matrices of increasing dimension and utilizing the Amitsur-Levitzki Theorem.

متن کامل

Left invertible semigroups on Hilbert spaces . ∗

For strongly continuous semigroups on a Hilbert space, we present a short proof of the fact that the left-inverse of a left-invertible semigroup can be chosen to be a semigroup as well. Furthermore, we show that this semigroup need not to be unique.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Potential Analysis

سال: 2021

ISSN: ['1572-929X', '0926-2601']

DOI: https://doi.org/10.1007/s11118-021-09931-2